PMO v.8, n.3, 2020 ISSN: 2319-023X

Funções auxiliares nos teoremas clássicos do valor médio

German Lozada-Cruz 🕩

Resumo

Neste trabalho mostramos algumas variantes dos teorema clássicos do valor médio. As ferramentas principais para mostrarmos estes resultados são funções auxiliares elementares.

Teorema do Valor Médio de Lagrange; Teorema do Valor Médio de Cauchy; Palavras-chave: Teorema do Valor Médio para Integrais.

Abstract

In this work, some variants of classical mean value theorems are proved. The main tools to prove these results are some elementary auxiliary functions.

Keyword: Lagrange's mean value theorem; Cauchy's mean value theorem; Integral mean value theorem.

1. Introdução

Sabemos que o primeiro contato de nossos alunos dos cursos de graduação em Matemática ou de Engenharia com os teoremas do tipo valor médio é em um curso de Cálculo Diferencial e Integral ([11] e [17] por exemplo) ou em um primeiro curso de Análise Real ([12]).

O primeiro teorema do valor médio é o conhecido Teorema do Valor Médio de Lagrange, o qual relaciona a taxa média da variação de uma função nos extremos de um intervalo com o valor da derivada da função em um ponto do mesmo intervalo.

O segundo teorema de valor médio é o Teorema do Valor Médio de Cauchy, o qual é uma generalização do Teorema do Valor Médio de Lagrange, que estabelece uma relação entre as derivadas de duas funções e a variação dessas funções em um intervalo finito.

O terceiro teorema de valor médio é o Teorema do Valor Médio para Integrais ou simplesmente Teorema do Valor Médio Integral, que relaciona a área da região sob o gráfico de uma função real f definida num intervalo fechado [a, b] com a área de um retângulo de base b-a e altura f(c) para algum c no intervalo [a, b].

Nas demonstrações desses teoremas (veja por exemplo [3, Teorema 2.3] e [12, Teorema 4.12]) algumas funções auxiliares são usadas e então aplica-se diretamente o Teorema de Rolle: Seja $f:[a,b]\to\mathbb{R}$ contínua em [a,b] e diferenciável em (a,b). Se f(a)=f(b), então, existe $c\in(a,b)$ tal que f'(c) = 0. Alguns autores chamam isso de "ideia feliz" ([7, p.24]).

O objetivo principal deste trabalho é usar funções auxiliares elementares para demonstrar algumas variações tanto dos Teoremas do Valor Médio de Lagrange, de Cauchy e Integral.

2. Funções auxiliares para o Teorema do Valor Médio de Lagrange

Nesta seção vamos usar algumas funções auxiliares elementares para demonstrar algumas variações do Teorema do Valor Médio de Lagrange.

Teorema 1 (Teorema de Lagrange). Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b] e derivável em (a,b), então existe $\eta \in (a,b)$ tal que

$$f(\eta) - f(a) = f'(\eta)(\eta - a). \tag{1}$$

Geometricamente, o Teorema do Valor Médio de Lagrange diz-nos que existe um ponto η dentro do intervalo (a,b), onde a reta tangente ao gráfico de f é paralela à reta secante que passa pelos pontos A=(a,f(a)) e B=(b,f(b)), ou seja $f'(\eta)=\frac{f(b)-f(a)}{b-a}$.

Se f(t) representa a posição de um corpo que se move ao longo de uma reta, dependendo do tempo t, então o quociente $\frac{f(b)-f(a)}{b-a}$ é a velocidade média do corpo no período de tempo b-a. Como f'(t) é a velocidade instantânea, fisicamente o Teorema do Valor Médio de Lagrange diz que existe um instante de tempo η , para o qual a velocidade instantânea é igual à velocidade média.

A demonstração do Teorema de Lagrange (veja [12, Teorema 4.12]) consiste em aplicar o Teorema de Rolle à função auxiliar

$$\phi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a). \tag{2}$$

Neste ponto, cabe fazer a seguinte pergunta: Qual é a origem da função auxiliar ϕ usada na demonstração do Teorema do Valor Médio de Lagrange?

A explicação mais simples da escolha de ϕ provavelmente seja a dada por R.C. Yates ([23]). A função ϕ é a diferença da ordenada do ponto P = (x, f(x)) no gráfico de f e da ordenada do ponto Q = (x, h(x)) na reta secante ao gráfico de f. Como as funções f e h se encontram nos pontos (a, f(a)) e (b, f(b)) temos ϕ (a) = 0 = ϕ (b). Assim, temos uma função para a qual podemos aplicar o Teorema de Rolle; consequentemente, obtemos o Teorema do Valor Médio de Lagrange.

Existem outras maneiras de obter ϕ (veja [10], [15] por exemplo). M.R. Spiegel em [16] observou que podemos encontrar ϕ da seguinte forma: vamos procurar uma aproximação linear de f, $\alpha + \beta x$, no intervalo [a, b], onde α e β são constantes a serem determinadas. Agora consideremos a diferença, $\phi(x)$, entre f(x) e sua aproximação linear $\alpha + \beta x$, i.e.,

$$\phi(\mathbf{x}) = f(\mathbf{x}) - (\alpha + \beta \mathbf{x}), \tag{3}$$

onde α e β são números reais a serem determinados satisfazendo a condição $\phi(a) = \phi(b)$. Dessa última condição obtemos $\beta = \frac{f(b)-f(a)}{b-a}$. Para acharmos α , fazemos $\phi(a) = 0$, assim obtemos $\alpha = f(a) - \frac{f(b)-f(a)}{b-a}a$. Logo,

$$\phi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Se fizermos uma ligeira modificação da aproximação linear de f da forma

$$\phi(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \lambda \mathbf{x}, \tag{4}$$

onde $\lambda \in \mathbb{R}$ tal que a condição $\phi(a) = \phi(b)$ seja satisfeita, obtemos a seguinte função auxiliar

$$\phi(\mathbf{x}) = f(\mathbf{x}) - \frac{f(\mathbf{b}) - f(\mathbf{a})}{\mathbf{b} - \mathbf{a}} \mathbf{x}.$$

J.Tong em [18] introduziu a função auxiliar da forma

$$H(x) = f(x) - \frac{f(b) - f(a)}{b - a} \left(x - \frac{a + b}{2} \right), \tag{5}$$

a qual satisfaz a condição $H(a) = \frac{f(a) + f(a)}{2} = H(b)$.

Se mudarmos ligeiramente a função auxiliar H dada em (5) pela função auxiliar

$$H(x) = f(x) - \frac{f(a) + f(b)}{2} - \frac{f(b) - f(a)}{b - a} \left(x - \frac{a + b}{2} \right). \tag{6}$$

Facilmente vemos que H(a) = 0 = H(b).

J.Tong em [19, Teorema 1] exibe uma família de funções auxiliares que envolvem dois parâmetros α e β , os quais satisfazem o Teorema de Rolle. Consequentemente, obtemos uma família de Teoremas de Valor Médio. Em particular, quando $\alpha = \beta$, obtém-se o Teorema do Valor Médio de Lagrange. Isso leva a concluir que existem uma infinidade de funções auxiliares.

Em 1958 T.M. Flett em [2] enunciou e demonstrou uma variação do Teorema de Lagrange.

Teorema 2 (Teorema de Flett [2]). $Se f : [a, b] \to \mathbb{R}$ é uma função derivável em [a, b] e f'(a) = f'(b), então, existe $\eta \in (a, b)$ tal que

$$f(\eta) - f(a) = f'(\eta)(\eta - a). \tag{7}$$

Geometricamente, o Teorema de Flett diz que se uma curva (t, f(t)) é suave no intervalo [a, b] e as retas tangentes nos extremos (a, f(a)) e (b, f(b)) são paralelas, então, existe um ponto $\eta \in (a, b)$ de modo que a reta tangente ao gráfico de f que passa por $(\eta, f(\eta))$ também passa por (a, f(a)).

Fisicamente, o Teorema de Flett diz que, se as velocidades inicial e final de uma partícula com trajetória (t, f(t)) suave no intervalo de tempo [a, b] forem iguais, então, existe um momento $\eta \in (a, b)$ tal que a velocidade instantânea da partícula nesse instante, é exatamente a velocidade média do percurso até o instante η .

Em 1977, R.E. Myers [9] demonstrou uma variação do Teorema de Flett.

Teorema 3 (Teorema de Myers [9]). Se $f : [a,b] \to \mathbb{R}$ é uma função derivável em [a,b] e f'(a) = f'(b), então, existe $\eta \in (a,b)$ tal que

$$f(b) - f(\eta) = f'(\eta)(b - \eta). \tag{8}$$

Em 1998, P.K. Sahoo e T. Riedel ([13, Teorema 5.2]) deram uma variação do Teorema de Flett (Teorema 2) onde eles removeram a condição de fronteira na derivada de f, i.e., f'(a) = f'(b).

Teorema 4 (Teorema de Sahoo-Riedel [13]). Se $f:[a,b] \to \mathbb{R}$ é uma função derivável em [a,b],

então, existe $\eta \in (a, b)$ tal que

$$f(\eta) - f(a) = f'(\eta)(\eta - a) - \frac{1}{2} \frac{f'(b) - f'(a)}{b - a} (\eta - a)^2.$$
 (9)

Demonstração. Aplicar o Teorema de Flett à função auxiliar $\psi:[a,b] \to \mathbb{R}$ dada por

$$\psi(x) = f(x) - \frac{1}{2} \frac{f'(b) - f'(a)}{b - a} (x - a)^2.$$
 (10)

Observação 1. A função auxiliar ψ usada no Teorema de Sahoo-Riedel é obtida considerando a diferença de f com uma aproximação quadrática de f,

$$\alpha + \beta(x-a) + \gamma(x-a)^2$$

numa vizinhança de a, i.e., $\psi(x) = f(x) - [\alpha + \beta(x-a) + \gamma(x-a)^2]$ e impondo a condição de fronteira na derivada de ψ , $\psi'(a) = \psi'(b)$. Assim,

$$\begin{split} \psi'(\mathbf{a}) &= \psi'(\mathbf{b}) \Leftrightarrow \mathbf{f}'(\mathbf{a}) - \beta = \mathbf{f}'(\mathbf{b}) - \beta - 2\gamma(\mathbf{b} - \mathbf{a}) \\ &\Leftrightarrow \gamma = \frac{1}{2} \, \frac{\mathbf{f}'(\mathbf{b}) - \mathbf{f}'(\mathbf{a})}{\mathbf{b} - \mathbf{a}}. \end{split}$$

As constantes α e β são arbitrárias e por conveniência podemos tomar $\alpha=0=\beta.$

Da Observação 1 podemos considerar uma função auxiliar adequada para mostrar uma variação do Teorema de Sahoo-Riedel.

Teorema 5 ([4]). Se $f : [a, b] \to \mathbb{R}$ é uma função diferenciável em [a, b], então, existe $\eta \in (a, b)$ tal que

$$f(\eta) - f(a) = f'(\eta)(\eta - a) - \frac{(n-1)}{n} \frac{f'(b) - f'(a)}{(b-a)^{n-1}} (\eta - a)^n, \quad n \in \mathbb{N}.$$
(11)

Demonstração. Seja n $\in \mathbb{N}$ e considere a função auxiliar $\psi:[a,b]\to \mathbb{R}$ dada por

$$\psi(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \lambda(\mathbf{x} - \mathbf{a})^{\mathbf{n}},$$

onde $\lambda \in \mathbb{R}$ que vamos escolher λ tal que a condição $\psi'(a) = \psi'(b)$ seja satisfeita.

Facilmente vemos que ψ é derivável em [a, b] e $\psi'(x) = f'(x) + n\lambda(x-a)^{n-1}$. Então,

$$\psi'(\mathbf{a}) = \psi'(\mathbf{b}) \Leftrightarrow \mathbf{f}'(\mathbf{a}) = \mathbf{f}'(\mathbf{b}) + \mathbf{n}\lambda(\mathbf{b} - \mathbf{a})^{\mathbf{n} - 1}$$
$$\Leftrightarrow \lambda = -\frac{1}{\mathbf{n}} \frac{\mathbf{f}'(\mathbf{b}) - \mathbf{f}'(\mathbf{a})}{(\mathbf{b} - \mathbf{a})^{\mathbf{n} - 1}}.$$

Assim, temos a função auxiliar

$$\psi(x) = f(x) - \frac{1}{n} \frac{f'(b) - f'(a)}{(b-a)^{n-1}} (x-a)^n$$

, a qual satisfaz as hipóteses do Teorema de Flett (Theorem 2). Então, existe $\eta \in (a,b)$ tal que

$$\psi(\eta) - \psi(\mathbf{a}) = \psi'(\eta)(\eta - \mathbf{a}).$$

Dessa igualdade segue (11).

D.çakmak e A.Tiryaki ([1, Teorema 2.1]) mostrou uma ligeira variação do Teorema de Sahoo-Riedel (Teorema 4) e esse se reduz ao Teorema de Myers (Teorema 3) quando f'(a) = f'(b).

Teorema 6 (Teorema de Çakmak-Tiryaki [1]). Seja $f : [a,b] \to \mathbb{R}$ uma função diferenciável em [a,b], então, existe $\eta \in (a,b)$ tal que

$$f(b) - f(\eta) = f'(\eta)(b - \eta) + \frac{1}{2} \frac{f'(b) - f'(a)}{b - a} (b - \eta)^2.$$
 (12)

Demonstração. Aplicar o Teorema de Myers à função auxiliar $h:[a,b]\to\mathbb{R}$ definida por

$$h(x) = f(x) - \frac{1}{2} \frac{f'(b) - f'(a)}{b - a} (x - b)^{2}.$$
(13)

Escolhendo um função auxiliar adequada obtemos a seguinte variação do Teorema de Çakmak-Tiryaki.

Teorema 7 ([4]). Se $f:[a,b] \to \mathbb{R}$ é uma função derivável em [a,b], então, existe $\eta \in (a,b)$ tal que

$$f(b) - f(\eta) = f'(\eta)(b - \eta) + \frac{n - 1}{n} \frac{f'(b) - f'(a)}{(b - a)^{n - 1}} (b - \eta)^{n}, \quad n \in \mathbb{N}.$$
(14)

Demonstração. Seja n $\in\mathbb{N}$ e considere a função auxiliar $\phi:[a,b]\to\mathbb{R}$ dada por

$$\phi(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \lambda(\mathbf{x} - \mathbf{b})^{\mathbf{n}},$$

onde $\lambda \in \mathbb{R}$. Vamos escolher λ tal que a condição $\phi'(a) = \phi'(b)$ esteja satisfeita.

A função ϕ é derivável em [a, b] e $\phi'(x) = f'(x) + n\lambda(x-b)^{n-1}$. Então,

$$\begin{split} \phi'(\mathbf{a}) &= \phi'(\mathbf{b}) \Leftrightarrow \mathbf{f}'(\mathbf{a}) + \mathbf{n}\lambda(\mathbf{a} - \mathbf{b})^{\mathbf{n} - 1} = \mathbf{f}'(\mathbf{b}) \\ &\Leftrightarrow \lambda = \frac{1}{\mathbf{n}} \frac{\mathbf{f}'(\mathbf{b}) - \mathbf{f}'(\mathbf{a})}{(\mathbf{a} - \mathbf{b})^{\mathbf{n} - 1}}. \end{split}$$

Assim, temos a função auxiliar

$$\phi(x) = f(x) + \frac{1}{n} \frac{f'(b) - f'(a)}{(a-b)^{n-1}} (x-b)^n$$

, a qual satisfaz as condições do Teorema Myers (Theorem 3). Então, existe $\eta \in (a,b)$ tal que

$$\phi(\mathbf{b}) - \phi(\eta) = \phi'(\eta)(\mathbf{b} - \eta).$$

Dessa última igualdade segue (14).

3. Funções auxiliares para o Teorema do Valor Médio de Cauchy

Nesta seção vamos usar algumas funções auxiliares elementares para demonstrar algumas variações do Teorema do Valor Médio de Cauchy.

Teorema 8 (Teorema de Cauchy). Se f, g : [a, b] $\rightarrow \mathbb{R}$ são funções contínuas em [a, b] e deriváveis em (a, b), então, existe $\eta \in (a, b)$ tal que

$$[f(b) - f(a)]g'(\eta) = [g(b) - g(a)]f'(\eta). \tag{15}$$

 $Se \ g'(x) \neq 0 \ para \ todo \ x \in (a,b), \ ent \tilde{ao},$

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\eta)}{g'(\eta)}.$$
(16)

Geometricamente, o Teorema de Cauchy diz que existe uma reta tangente à curva $\gamma : [a, b] \to \mathbb{R}^2$ dada por $\gamma(t) = (f(t), g(t))$, a qual é paralela à reta que passa pelos pontos A = (f(a), g(b)) e B = (f(b), g(b)) da curva γ .

Se g(x) = x no Teorema de Cauchy (Teorema 8), então obtemos o Teorema de Lagrange (Teorema 1).

A demonstração do Teorema de Cauchy [12, Teorema 4.14] consiste em aplicar o Teorema de Rolle à função auxiliar $h:[a,b]\to\mathbb{R}$ dada por

$$h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} [g(x) - g(a)].$$
(17)

Como na demonstração do Teorema de Lagrange cabe aqui a seguinte pergunta: Qual é a origem da função auxiliar ϕ usada na demonstração do Teorema de Cauchy?

Uma ligeira modificação da função auxiliar (17) é usada em [8, Teorema 5.11] para demonstrar o Teorema de Cauchy:

$$h(x) = f(x) - \frac{f(b) - f(a)}{\sigma(b) - \sigma(a)} g(x).$$
(18)

M. Poliferno [10] considerou a função auxiliar h : [a, b] $\to \mathbb{R}$ dada por

$$h(x) = \frac{f(x) - mg(x)}{\sqrt{m^2 + 1}},$$

onde m = $\frac{f(b)-f(a)}{g(b)-g(a)}$ é a inclinação de reta L que passa pelos extremos A = (f(a),g(a)) e B = (f(b),g(b)) da curva $\gamma(x)=(f(x),g(x))$. A função h é a distância de ponto da curva γ à reta L, então, geometricamente, h(a) = 0 = h(b). Logo, pelo Teorema de Rolle, segue a conclusão do Teorema de Cauchy.

J. Tong [20] considerou a seguinte função auxiliar $h : [a, b] \to \mathbb{R}$ dada por

$$h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \left[g(x) - \frac{g(a) + g(b)}{2} \right]$$
 (19)

Claramente vemos que $h(a) = \frac{f(a) + f(b)}{2} = h(b)$, logo, o Teorema de Rolle dá a conclusão do Teorema de Cauchy.

Observação 2. Modificando ligeiramente a função auxiliar h dada em (19) por J. Tong pela função auxiliar

$$h(x) = f(x) - \frac{f(a) + f(b)}{2} - \frac{f(b) - f(a)}{g(b) - g(a)} \left[g(x) - \frac{g(a) + g(b)}{2} \right],$$

também obtemos a conclusão do Teorema do Valor Médio de Cauchy.

M. Spiegel [16] considerou a função auxiliar $h : [a, b] \to \mathbb{R}$ da forma

$$h(x) = f(x) - [\alpha + \beta g(x)], \qquad (20)$$

onde α e β são números reais a serem determinados satisfazendo a condição h(a) = h(b). Dessa condição, obtemos $\beta = \frac{f(b)-f(a)}{g(b)-g(a)}$. Para determinar a constante α fazemos h(a) = 0, assim $\alpha = f(a) - \frac{f(b)-f(a)}{g(b)-g(a)}g(a)$. Logo, a função auxiliar tem a forma

$$h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} [g(x) - g(a)].$$
(21)

Note que a função dada em (21) é a mesma função auxiliar considerada por M. Protter e C. Morrey (veja (17)) e, uma forma reduzida da função dada em (21) é

$$h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x), \tag{22}$$

a qual é obtida quando tomamos $\alpha = 0$.

Seguindo a ideia de M. Spiegel em [16], consideramos a função auxiliar $h : [a, b] \to \mathbb{R}$ dada por

$$h(x) = f(x) + \lambda g(x),$$

onde $\lambda \in \mathbb{R}$, o qual será escolhido tal que h(a) = h(b). Dessa condição, obtemos $\lambda = -\frac{f(b)-f(a)}{g(b)-g(a)}$. Assim, temos a função auxiliar

$$h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x).$$

Veja que essa função auxiliar é a mesma obtida em (22).

Em 2000, E.Wachnicki ([21, Teorema 3]) demonstrou a seguinte variação do Teorema do Valor Médio de Cauchy.

Teorema 9 (Teorema de Wachnicki [21]). Sejam f, g : [a, b] $\rightarrow \mathbb{R}$ funções deriváveis em [a, b]. Se $g'(x) \neq 0$ para todo $x \in [a, b]$ e

$$\frac{f'(a)}{g'(a)} = \frac{f'(b)}{g'(b)},\tag{23}$$

então, existe $\eta \in (a, b)$ tal que

$$\frac{f(\eta) - f(a)}{g(\eta) - g(a)} = \frac{f'(\eta)}{g'(\eta)}.$$
(24)

E.Wachnicki em [21, Teorema 4] removeu a condição (23) e obteve o seguinte resultado o qual é um análogo ao Teorema de Sahoo-Riedel.

Teorema 10. Sejam f, g : [a, b] $\rightarrow \mathbb{R}$ funções deriváveis em [a, b]. Se g'(x) \neq 0 para todo x \in [a, b], então, existe $\eta \in$ (a, b) tal que

$$\frac{f(\eta) - f(a)}{g(\eta) - g(a)} = \frac{f'(\eta)}{g'(\eta)} - \frac{1}{2} \left(\frac{f'(b)}{g'(b)} - \frac{f'(a)}{g'(a)} \right) \frac{g(\eta) - g(a)}{g(b) - g(a)}.$$
 (25)

A demonstração desse Teorema (veja [21, Teorema 4]) consiste em aplicar o Teorema de Wachnicki à função auxiliar $\psi : [a, b] \to \mathbb{R}$ dada por

$$\psi(\mathbf{x}) = \mathbf{f}(\mathbf{x}) - \frac{1}{2} \left(\frac{\mathbf{f}'(\mathbf{b})}{\mathbf{g}'(\mathbf{b})} - \frac{\mathbf{f}'(\mathbf{a})}{\mathbf{g}'(\mathbf{a})} \right) \frac{(\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{a}))^2}{\mathbf{g}(\mathbf{b}) - \mathbf{g}(\mathbf{a})}.$$

Em [5] mostramos a seguinte variação do Teorema 10.

Teorema 11 ([5, Teorema 2.3]). Sejam f, g : [a, b] $\rightarrow \mathbb{R}$ funções deriváveis em [a, b]. Se g'(x) $\neq 0$ para todo x \in [a, b], então, existe $\eta \in$ (a, b) tal que

$$\frac{f(\eta) - f(a)}{g(\eta) - g(a)} = \frac{f'(\eta)}{g'(\eta)} - \frac{n - 1}{n} \left(\frac{f'(b)}{g'(b)} - \frac{f'(a)}{g'(a)} \right) \left(\frac{g(\eta) - g(a)}{g(b) - g(a)} \right)^{n - 1}, n \in \mathbb{N}.$$
 (26)

Demonstração. Seja $n \in \mathbb{N}$ e consideremos a função auxiliar $\psi : [a,b] \to \mathbb{R}$ dada por

$$\psi(x)=f(x)+\lambda(g(x)-g(a))^n,\ \lambda\in\mathbb{R}.$$

Vamos escolher λ de modo que a seguinte condição esteja satisfeita

$$\frac{\psi'(\mathbf{a})}{g'(\mathbf{a})} = \frac{\psi'(\mathbf{b})}{g'(\mathbf{b})}.$$
 (27)

A função ψ é derivável em [a,b] e $\psi'(x) = f'(x) + \lambda n(g(x) - g(a))^{n-1}g'(x)$. De (27) obtemos

$$\begin{split} \frac{\psi'(a)}{g'(a)} &= \frac{\psi'(b)}{g'(b)} \Leftrightarrow \frac{f'(a)}{g'(a)} &= \frac{f'(b)}{g'(b)} + \lambda n \left[g(b) - g(a)\right]^{n-1} \\ &\Leftrightarrow \lambda = -\frac{1}{n} \left(\frac{f'(b)}{g'(b)} - \frac{f'(a)}{g'(a)}\right) \frac{1}{(g(b) - g(a))^{n-1}}. \end{split}$$

Assim, a função auxiliar ψ tem a forma

$$\psi(x) = f(x) - \frac{1}{n} \Big(\frac{f'(b)}{g'(b)} - \frac{f'(a)}{g'(a)} \Big) \frac{(g(x) - g(a))^n}{(g(b) - g(a))^{n-1}}.$$

Agora, aplicando o Teorema de Wachnicki (Teorema 9) às funções ψ e g, existe $\eta \in (a,b)$ tal que

$$\frac{\psi(\eta) - \psi(\mathbf{a})}{g(\eta) - g(\mathbf{a})} = \frac{\psi'(\eta)}{g'(\eta)}.$$

De onde segue a igualdade (26)

Observação 3. Se g(x) = x, então, os Teoremas 9 e 10 transformam-se nos Teoremas de Flett (Teorema 2) e de Sahoo-Riedel (Teorema 4), respectivamente.

Observação 4. Se g(x) = x, então, o Teorema 11 transform-se em uma variação do Teorema de Sahoo-Riedel (veja [4]), i.e.,

$$f(\eta) - f(a) = f'(\eta)(\eta - a) - \frac{n-1}{n} \frac{f'(b) - f'(a)}{(b-a)^{n-1}} (\eta - a)^n, \ n \in \mathbb{N}.$$
 (28)

Em [5], provamos a seguinte variação do Teorema de Wachnicki.

Teorema 12 ([5, Teorema 2.4]). $Sejam f, g : [a,b] \to \mathbb{R}$ funções deriváveis em [a,b]. $Se g'(x) \neq 0$ para todo $x \in [a,b]$ e

$$\frac{f'(a)}{g'(a)} = \frac{f'(b)}{g'(b)},\tag{29}$$

então, existe $\eta \in (a, b)$ tal que

$$\frac{f(b) - f(\eta)}{g(b) - g(\eta)} = \frac{f'(\eta)}{g'(\eta)}.$$
(30)

Removendo a condição (29), obtivemos uma variação do Teorema 12, o qual é um análogo do Teorema Çakmak-Tiryaki (Teorema 6).

Teorema 13. Sejam f, g : [a, b] $\rightarrow \mathbb{R}$ funções deriváveis em [a, b]. Se g'(x) \neq 0 para todo x \in [a, b], então, existe $\eta \in$ (a, b) tal que

$$\frac{f(b) - f(\eta)}{g(b) - g(\eta)} = \frac{f'(\eta)}{g'(\eta)} + \frac{1}{2} \left(\frac{f'(b)}{g'(b)} - \frac{f'(a)}{g'(a)} \right) \frac{g(b) - g(\eta)}{g(b) - g(a)}.$$
 (31)

Para demonstrar esse teorema, usamos a função auxiliar $\phi:[a,b] \to \mathbb{R}$ dada por

$$\phi(x) = f(x) - \frac{1}{2} \left(\frac{f'(b)}{g'(b)} - \frac{f'(a)}{g'(a)} \right) \frac{((g(x) - g(b))^2}{g(b) - g(a)}$$

junto com a função g, e logo aplicamos o Teorema 12.

Em [5] obtivemos a seguinte variação do Teorema 13.

Teorema 14 ([5, Teorema 2.5]). Sejam f, g : [a, b] $\rightarrow \mathbb{R}$ funções deriváveis em [a, b]. Se g'(x) $\neq 0$ para todo $x \in [a, b]$, então, existe $\eta \in (a, b)$ tal que

$$\frac{f(b)-f(\eta)}{g(b)-g(\eta)} = \frac{f'(\eta)}{g'(\eta)} + \frac{n-1}{n} \left(\frac{f'(b)}{g'(b)} - \frac{f'(a)}{g'(a)} \right) \left(\frac{g(b)-g(\eta)}{g(b)-g(a)} \right)^{n-1}, n \in \mathbb{N}.$$

(32)

Demonstração. Seja $n \in \mathbb{N}$, e consideremos a função auxiliar $\phi : [a, b] \to \mathbb{R}$ dada por

$$\phi(x) = f(x) + \lambda (g(x) - g(b))^n, \ \lambda \in \mathbb{R}.$$

Vamos escolher λ de modo que a condição seja satisfeita

$$\frac{\phi'(a)}{g'(a)} = \frac{\phi'(b)}{g'(b)}.$$
(33)

A função ϕ é derivável em [a, b] e $\phi'(x) = f'(x) + \lambda n(g(x) - g(b))^{n-1}g'(x)$. Assim,

$$\begin{split} \frac{\phi'(\mathbf{a})}{g'(\mathbf{a})} &= \frac{\phi'(\mathbf{b})}{g'(\mathbf{b})} \Leftrightarrow \frac{f'(\mathbf{a})}{g'(\mathbf{a})} + n\lambda[g(\mathbf{a}) - g(\mathbf{b})]^{n-1} = \frac{f'(\mathbf{b})}{g'(\mathbf{b})} \\ &\Leftrightarrow \lambda = \frac{1}{n} \Big(\frac{f'(\mathbf{b})}{g'(\mathbf{b})} - \frac{f'(\mathbf{a})}{g'(\mathbf{a})} \Big) \frac{1}{(g(\mathbf{a}) - g(\mathbf{b}))^{n-1}}. \end{split}$$

Logo, a função auxiliar ϕ tem a forma

$$\phi(x) = f(x) + \frac{1}{n} \Big(\frac{f'(b)}{g'(b)} - \frac{f'(a)}{g'(a)} \Big) \frac{(g(x) - g(b))^n}{(g(a) - g(b))^{n-1}}.$$

Como as funções ϕ e g satisfazem as hipóteses do Teorema 12, existe $\eta \in (a, b)$ tal que

$$\frac{\phi(b) - \phi(\eta)}{g(b) - g(\eta)} = \frac{\phi'(\eta)}{g'(\eta)}.$$

Dessa última igualdade segue o resultado.

4. Funções auxiliares para o Teorema do Valor Médio Integral

Nesta seção vamos usar algumas funções auxiliares elementares para demonstrar algumas variações do Teorema do Valor Médio Integral.

Teorema 15 (Teorema do Valor Médio Integral). Se $f : [a, b] \to \mathbb{R}$ é uma função contínua, então, existe $\xi \in (a, b)$ tal que

$$(b-a)f(\xi) = \int_{a}^{b} f(x)dx.$$
 (34)

Geometricamente, para uma função f
 não negativa, o Teorema do Valor Médio Integral diz que a área compre
endida entre o gráfico de f, as retas x=a, x=be o eixo x é igual a $(b-a)f(\xi)$, ou seja, a área do retângulo de lados b-ae $f(\xi)$.

Em 1970, S.G. Wayment ([22]) demonstrou a primeira variação do Teorema do Valor Médio Integral, o qual é a versão integral do Teorema de Flett ([2]).

Teorema 16 (Teorema de Wayment). $Se f : [a,b] \to \mathbb{R}$ é uma função contínua em [a,b] e f(a) = f(b), então, existe $\xi \in (a,b)$ tal que

$$(\xi - a)f(\xi) = \int_{a}^{\xi} f(x)dx.$$

O seguinte resultado é uma ligeira modificação do Teorema de Wayment.

Teorema 17 ([14, Teorema 3.2]). Se $f : [a,b] \to \mathbb{R}$ é uma função contínua em [a,b] e f(a) = f(b), então, existe $\xi \in (a,b)$ tal que

$$(b - \xi)f(\xi) = \int_{\xi}^{b} f(x)dx.$$
 (36)

Em 2007, P.K. Sahoo [14, Teorema 2.1] removeu a condição de fronteira, f(a) = f(b), do Teorema de Wayment (Teorema 16), e obteve o seguinte resultado:

Teorema 18 (Teorema de Sahoo). Se $f : [a, b] \to \mathbb{R}$ é uma função contínua em [a, b], então, existe $\xi \in (a, b)$ tal que

$$(\xi - a)f(\xi) - \frac{1}{2} \frac{f(b) - f(a)}{b - a} (\xi - a)^2 = \int_a^{\xi} f(x) dx.$$
 (37)

Para demonstrar o Teorema de Sahoo aplicamos o Teorema de Wayment à função auxiliar ψ : $[a,b] \to \mathbb{R}$ dada por

$$\psi(\mathbf{x}) = f(\mathbf{x}) - \frac{f(\mathbf{b}) - f(\mathbf{a})}{\mathbf{b} - \mathbf{a}} (\mathbf{x} - \mathbf{a}).$$

Em [6] demonstramos a seguinte variante do Teorema de Sahoo.

Teorema 19. Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b], então, existe $\xi \in (a,b)$ tal que

$$(\xi - a)f(\xi) - \frac{n}{n+1} \frac{f(b) - f(a)}{(b-a)^n} (\xi - a)^{n+1} = \int_a^{\xi} f(x) dx, \quad n \in \mathbb{N}.$$
 (38)

Demonstração. Seja n ∈ N e considere a função auxiliar ψ : [a, b] → R dada por ψ (x) = f(x) + λ (x − a)ⁿ, onde λ ∈ R. Vamos escolher λ de modo que a condição ψ (a) = ψ (b) seja satisfeita. Então,

$$f(a) = f(b) + \lambda (b-a)^n \Leftrightarrow \lambda = -\frac{f(b) - f(a)}{(b-a)^n}.$$

Assim, temos a função auxiliar $\psi(x) = f(x) - \frac{f(b) - f(a)}{(b-a)^n} (x-a)^n$, a qual é contínua em [a, b]. Aplicando o Teorema de Wayment à função ψ , existe $\xi \in (a, b)$ tal que

$$\psi(\xi)(\xi - \mathbf{a}) = \int_{\mathbf{a}}^{\xi} \psi(\mathbf{x}) d\mathbf{x}.$$

Dessa igualdade segue (38).

Observação 5. A equação (38) no Teorema 19 dá uma família de Teoremas de valor médio para integrais.

Se consideramos a sequência de números reais $\{I_n\}_{n\in\mathbb{N}}$ onde

$$I_n = (\xi - a)f(\xi) - \frac{n}{n+1}\frac{f(b) - f(a)}{(b-a)^n}(\xi - a)^{n+1},$$

temos

$$\lim_{n\to\infty} I_n = (\xi - a)f(\xi).$$

Note que:

 \bullet Se n = 1 em (38), obtemos o Teorema de Sahoo (Teorem18). Nesse caso, a função auxiliar é da forma

$$\psi(x) = f(x) - \frac{f(b) - f(a)}{(b-a)}(x-a).$$

• Se n = 2 em (38), obtemos uma variação de (37)

$$(\xi - a)f(\xi) - \frac{2}{3}\frac{f(b) - f(a)}{(b - a)^2}(\xi - a)^3 = \int\limits_a^\xi f(x) dx.$$

Nesse caso, temos a função auxiliar

$$\psi(x) = f(x) - \frac{f(b) - f(a)}{(b-a)^2} (x-a)^2.$$

Quando removemos a condição de fronteira f(a) = f(b) no Teorema 17, obtemos o seguinte resultado:

Teorema 20. Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b], então, existe $\xi \in (a,b)$ tal que

$$(b - \xi)f(\xi) + \frac{1}{2} \frac{f(b) - f(a)}{b - a} (b - \xi)^2 = \int_{\xi}^{b} f(x) dx.$$
 (39)

Na demonstração desse teorema, aplicamos o Teorema 17 à função auxiliar $\psi:[a,b] \to \mathbb{R}$ dada por

$$\psi(x) = f(x) + \frac{f(b) - f(a)}{b - a}(b - x).$$

Em [6] mostramos a seguinte variação do Teorem 20.

Teorema 21. Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b], então, existe $\xi \in (a,b)$ tal que

$$(b-\xi)f(\xi) + \frac{n}{n+1} \frac{f(b) - f(a)}{(b-a)^n} (b-\xi)^{n+1} = \int_{\xi}^{b} f(x) dx, \quad n \in \mathbb{N}.$$
 (40)

Demonstração. Seja n ∈ N e considere a função auxiliar ψ : [a, b] → R dada por ψ (x) = f(x) + λ (x – b)ⁿ, onde λ ∈ R. Vamos escolher λ de modo que a condição ψ (a) = ψ (b) seja satisfeita. Então,

$$\psi(a) = \psi(b) \Leftrightarrow f(a) + \lambda (a - b)^n = f(b) \Leftrightarrow \lambda = \frac{f(b) - f(a)}{(a - b)^n}.$$

Assim, temos a função auxiliar $\psi(x) = f(x) + \frac{f(b)-f(a)}{(b-a)^n}(x-b)^n$ a qual é contínua em [a, b]. Aplicando

o Teorema 17 à função ψ , existe $\xi \in (a, b)$ tal que

$$(b-\xi) \psi(\xi) = \int_{\xi}^{b} \psi(x) dx,$$

a qual implica a igualdade (40).

Observação 6. A equação (40) no Teorema 21 dá uma família de teoremas de valor médio para integrais.

Se consideramos a sequência de números reais $\{I'_n\}_{n\in\mathbb{N}}$, onde

$$I_n' = (b - \xi)f(\xi) + \frac{n}{n+1} \frac{f(b) - f(a)}{(b-a)^n} (b - \xi)^{n+1},$$

temos

$$\lim_{n\to\infty} I'_n = (b - \xi)f(\xi).$$

Note que:

 \bullet Se n = 1 em (40), obtemos o Teorema 20. Nesse caso, temos a função função auxiliar

$$\psi(x) = f(x) + \frac{f(b) - f(a)}{(b - a)}(x - b).$$

• Se n = 2 in (40), obtemos uma variação de (39)

$$(b-\xi)f(\xi) + \frac{2}{3}\frac{f(b)-f(a)}{(b-a)^2}(b-\xi)^3 = \int_{\xi}^{b} f(x)dx.$$

Nesse caso, a função auxiliar é da forma

$$\psi(x) = f(x) + \frac{f(b) - f(a)}{(b-a)^2} (x - b)^2.$$

Referências

- [1] Çakmak, D.; Tiryaki, A. Mean value theorem for holomorphic functions. Electron. J. Differential Equations, N°. 34, 6pp., 2012.
- [2] Flett, T.M. A mean value problem, Math. Gazette. 42, pp.38-39, 1958.
- [3] Lang, S., *Undergraduate Analysis*. Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 2005.
- [4] Lozada-Cruz, G., Some variants of Lagrange's mean value theorem. Acepted for publication, 2020.
- [5] Lozada-Cruz, G., Some variants of Cauchy's mean value theorem. Int. J. Math. Ed. Sci. Tech. Accepted for publication, 2019.
- [6] Lozada-Cruz, G., Some variants of Integral mean value theorem. Submitted for publication, 2020.

- [7] Martínez de la Rosa, F., *Panorámica de los Teoremas de Valor Medio*. Miscelánea Matemática 47, pp.23-38, 2008.
- [8] Mercer, Peter R., More Calculus of a single variable. Undergraduate Texts in Mathematics. Springer, New York, 2014.
- [9] Myers, R.E. Some elementary results related to the mean value theorem, The Two-Year College Mathematics Journal, Vol. 8, N°.1, pp.51-53, 1977.
- [10] Poliferno, M. J.; A natural auxiliary function for the Mean Value Theorem. Amer. Math. Monthly 69, N°.1, pp.45–47, 1962.
- [11] Protter, M.H.; Protter, P.E., Calculus with Analytic Geometric. Fourth Edition. Jones and Bartlett Publishers, Inc., 1988.
- [12] Protter, M.H.; Morrey Jr., C.B., A First Course in Real Analysis. Second Edition. Undergraduate Texts in Mathematics, Springer-Verlag New York, Inc., 1991.
- [13] Sahoo, P.K.; Riedel, T. Mean Value Theorems and Functional Equations, World Scientific, River Edge, NJ, 1998.
- [14] Sahoo, P.K., Some results related to the integral mean value theorem, Int. J. Math. Ed. Sci. Tech. 38(6), 818–822, 2007.
- [15] Silverman, H., A simple auxiliary function for the mean value theorem. Coll. Math. J. 20, p. 323, 1989.
- [16] Spiegel, Murray R., Mean value theorems and Taylor series. Mathematics Magazine 29, pp.263–266, 1956.
- [17] Stewart, J., Calculus Early Transcendentals. Sixth Edition, Thomson Brooks/Cole, 2008.
- [18] Tong, J., A generalization of the mean value theorem for Integrals, The College Mathematics Journal, Vol. 33, pp.408–409, 2002.
- [19] Tong, J., The mean value theorem generalised to involve two parameters. Math. Gazette, vol. 88, N° 513, pp.538–540, 2004.
- [20] Tong, J., A new auxiliary function for the mean value theorem. Journal of the North Carolina Academy of Science Vol. 121, N°.4, pp.174–176, 2005.
- [21] Wachnicki, E., Une variante du théorème de Cauchy de la valeur moyenne, Demonstratio Math. 33. 4, pp.737–740, 2000.
- [22] Wayment, S.G., An integral mean value theorem, Math. Gazette. 54, 300–301, 1970.
- [23] Yates, R. C., The law of the mean. Amer. Math. Monthly. 66, pp.579-580, 1959.

Recebido: 28/02/2020

Publicado: 11/08/2020